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Proton transfer in hydrogen-bonded crystalline KH2PO4

Hidehiko Sugimoto† and Susumu Ikeda‡
† Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-
ku, Tokyo 112, Japan
‡ National Laboratory for High Energy Physics, Oho 1-1, Tsukuba, Ibaraki 305, Japan

Received 21 June 1995, in final form 18 September 1995

Abstract. Properties of the proton transfer in KH2PO4 (KDP) are examined on the basis of a
model that was proposed to explain the mechanism of the phase transition from a ferroelectric
phase to a paraelectric phase; it is found that, in the paraelectric phase, a proton transfers from
one site to the other site at a jump rate of the order of 1012 s−1.

Scattering functions for incoherent scattering of thermal neutrons induced by the proton
motion are also calculated in the framework of the classical approximation.

1. Introduction

Most of the theoretical studies [1–6] concerning properties of hydrogen-bonded materials
with the ferroelectric (antiferroelectric) phase transition like KH2PO4 (KDP) are based on
the assumption introduced by Slater [7] and refined by Takagi [8]: the static and dynamic
properties of these systems are described on the basis of the configuration energy determined
by proton configurations. Recent experiments, however, have revealed that the phase
transition of this type exists even in materials in which the hydrogen-bond network is
closed in a dimer—for example, K3D(SO4)2 [9, 10]. This seems to indicate that studies
from different points of view are required to explain properties of hydrogen-bonded materials
including the mechanism of the phase transition.

One such study has been performed by Kojyo and Onodera [11] recently. They proposed
a dipole–proton model in which a strong coupling between protons and dipole moments is
assumed, and showed that properties of the ferroelectric phase transition in CsH2PO4 are
explained by this model.

One of the striking features of the phase transition in hydrogen-bonded materials is
that there is a large isotope effect on the transition temperatureTc. For example, KDP
and its deuterated isomorph KD2PO4 (DKDP) undergo phase transitions at 122 and 213 K,
respectively. To explain such remarkable isotope effects, the tunnelling motion of protons
proposed by Blinc [12] and by Tokunaga and Matsubara [13] has been introduced for both
cases—the Slater–Takagi model and the dipole–proton model. Although the introduction
of the tunnelling motion gives an explanation for the large isotope effect on the transition
temperature, at present there is no observation of direct evidence for the tunnelling motion of
protons (deuterons), in spite of recent careful experiments [14, 15]. Furthermore, Ichikawa
[16] found that, in KDP, the increase inTc upon deuteration may be attributed to an
accompanying increase in the oxygen–hydrogen–oxygen bond (O–O bond) distance,d.
Later, Nelmes [18] re-examined the high-resolution neutron diffraction results for KDP and
DKDP, and confirmed that this geometric isotope effect plays an important role for the
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increase inTc upon deuteration although part of the increase is caused by a direct tunnelling
effect.

Recently, we proposed a new model for the mechanism of the phase transition in KDP
[18], based on the dipole–proton model proposed by Kojyo and Onodera, but not introducing
the tunnelling motion of protons explicitly. From the examination of this model [18, 19],
we found the following features: (1) the phase transition is of order–disorder type with a
large isotope effect on the transition temperature, in agreement with experiments; (2) the
isotope effect is due to changes of shape of the potential acting on a proton, induced by
ordering of the dipole moments, but not the tunnelling motion of protons; (3) a change ind

makes an important contribution to a change inTc, in addition to the effect of mass; (4) the
excitation energies for the proton motion in the direction along an O–O bond are distributed
over a wide energy region. These features agree with those of observations for KDP [14,
20–23].

In our previous paper [24] (from now on referred to as I), furthermore, the motion
of dipole moments was examined in the framework of the harmonic approximation; it was
shown that, in the ferroelectric phase, there are electric dipole waves, via which the vibration
motion of protons is induced along the direction of O–O bonds. This motion of protons
is expected to be detected by neutron scattering experiments. In fact, Shibata and Ikeda
[23] found a peak at 28 meV in energy spectra obtained from incoherent inelastic neutron
scattering, in addition to peaks corresponding to the excitation of protons to excited states.
Our conclusion was that the observed peak at 28 meV is to be regarded as a peak due to
the vibration motion of protons induced by the electric dipole wave.

In this paper, we examine the motion of dipole moments in our model numerically. On
the basis of the results, dynamic properties of protons in the paraelectric phase are discussed.
Our plan is as follows. In section 2, the main features of our model are described. We
emphasize here that the proton transfer is caused by the adiabatic transition. Calculations
using the Langevin formulation are performed to examine the motion of dipole moments
and some results obtained are mentioned in section 3. In section 4, we discuss properties of
scattering functions of the incoherent neutron scattering induced by the motion of protons.
Finally, in section 5, some aspects of our results are discussed, including a comparison
between scattering functions obtained and those of a recent experiment.

The purpose of the present paper is to clarify dynamic properties of protons in KDP,
based on our model.

2. Model

2.1. The dipole–proton system

We consider a system comprisingN distorted PO4 tetrahedra and 2N protons, under the
assumption that (1) the distortion of tetrahedroni is proportional to its electric dipole
momentµi ; and (2) all dipole moments of the tetrahedra lie along thec axis in a KDP
crystal. We write the Hamiltonian for this system as follows:

H = Hp + Hp−d + Hd. (1)

Here,Hp is the Hamiltonian for protons, defined by

Hp =
2N∑
α=1

(
p2

α

2m
+ Uα

)
(2)
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wherem is the proton mass, andpα the momentum of protonα. Uα is a potential acting
on the proton, which has double minima on the O–O bond. The interaction energy between
protons and dipole moments,Hp−d , is assumed to be expressed as

Hp−d = −
2N∑
α=1

K(µi + µj)xα (3)

whereµi andµj , respectively, are dipole moments of two tetrahedra (i and j ) connected
by protonα, xα is the position of the proton measured from the centre of the O–O bond,
andK is a coupling constant. The Hamiltonian for dipole moments,Hd , is as follows:

Hd = −
∑

i

h̄2

2M

∂2

∂µ2
i

+
∑

i

A

2
µ2

i +
∑
i,j

Di,jµiµj . (4)

Here,M in the first term is an effective mass of a dipole moment, the second term is the
elastic energy due to deformation of the tetrahedra, and the third term is the energy of
interaction between dipoles.

Protons are expected to follow the motion of dipole moments because of the smallness
of proton mass. The adiabatic approximation that separates the motion of fast protons from
that of slow dipole moments should, therefore, be valid for the description of the present
system. In this approximation, the wave function of the system is written as

9(r1, ··, r2N, µ1, ··, µN) = χ({µi})
2N∏
α=1

ψ(rα; {µi}) (5)

whereχ({µi}) is the wave function of the dipole moments andψ(rα; {µi}) the ground-state
wave function of protonα.

The adiabatic potential of the system may be expressed as a function ofN dipole
moments. We write it as [18, 19, 24]

Epot = A

2

N∑
i=1

µ2
i + B

4

2N∑
〈ij〉

µiµj −
2N∑
〈ij〉

E0
ij . (6)

Here, the first term is the elastic energy due to mechanical deformations of the tetrahedra;
the second term is the interaction energy between dipoles that is taking account of only the
nearest-neighbour interaction for simplicity; and the last term is the energy of 2N protons,
where−E0

ij is the ground-state energy of a proton connecting two neighbouring tetrahedra
(i andj ).

Knowledge of−E0
ij andψ(rα; {µj }) is obtained from quantum mechanical calculations

for protons in KDP. In our previous letter [17], we found by using an empirical potential for
Uα that the interaction between a proton and dipole moments induces a drastic change of
the potential acting on the proton; accordingly, the energy and wave function of the ground
state for the proton strongly depend on a sum of dipole moments of two tetrahedra (i and
j ) connected by the proton,µi + µj .

The ground-state energy obtained can be expressed as

E0
ij = [h2 + I 2K2(µi + µj)

2]1/2 − h (7)

using two parameters,h andI [18]. By using equations (6) and (7), it is easy to show that
a state in whichµi = µs holds for all tetrahedra becomes stable atT = 0 K whenA > B,
whereµs is a saturated dipole moment determined by the condition∂Epot/∂µs = 0 (see
[18, 19]).

In figure 1(a) we show schematically profiles of the ground-state wave function of a
proton. When|µi +µj | is large, the wave function of the ground state is strongly localized;
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Figure 1. The elementary jump process: (a) schematic profiles of the potential and wave
functions of a proton along the direction of an O–O bond (1) atµi +µj = 2µs , (2) atµi +µj = 0
and (3) atµi + µj = −2µs . (b) The adiabatic potential shown schematically. When the system
point is at points A, B and C, the proton is in the states (1), (2) and (3), respectively. For the
proton transfer from (1) to (3) to occur, it is required that the system point moves from the well
at A to the other well at C as a result of thermal fluctuations.

the maximum of its amplitude is at about 0.18Å from the centre of the O–O bond for
µi + µj = 2µs and−0.18 Å for µi + µj = −2µs , respectively. The displacement of the
proton from the centre is in good agreement with the experimental result obtained from a
neutron diffraction measurement [22]. Atµi + µj = 0, on the other hand, the ground-state
wave function extends over a broad potential well and the maximum of its amplitude is
located at the centre.

Figure 1(b) gives schematically the features of the adiabatic potentials,Epot , for the
ground and excited states of the proton. We emphasize here that there are two equilibrium
positions on the O–O bond and that the proton transfers from one equilibrium position to
the other equilibrium position passing through the state atµi +µj = 0 as a result of thermal
fluctuations.

2.2. Proton transfer due to the adiabatic transition

In the adiabatic approximation, a state of the system is represented by a system point on
the adiabatic potential surface for the ground state of protons. Under this approximation,
we will examine the proton-transfer process in the temperature region where the motion of
the system point is described classically.

The transition from one state with the proton wave function localized on the left-hand
side (figure 1(a), (1)) to the other state with one localized on the right-hand side (figure 1(a),
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(3)) is induced by the movement of the system point from a left-hand well (A in figure 1(b))
in the adiabatic potential surface to a right-hand well (C) passing through the saddle-point
configuration (B). The jump rate of the proton is, therefore, expected to be given by

0 = ω0

2π
exp(−Ea/kT ) (8)

whenEa > kT . Here,Ea is the energy difference between the adiabatic potential at point
A and that of B, andkT is the thermal energy.

The transfer mechanism is classified according to the magnitude of the excitation energy
of the proton at B, 2J . WhenJ is larger than the vibration energy of the system point in
the wells,h̄ωd , the proton follows the motion of dipole moments adiabatically [25–28]. In
this case of adiabatical transition, the frequency factorω0 is given byω0 ' ωd .

If J < h̄ωd , the system point undergoes transitions from the adiabatic potential surface
for the ground state of the proton to that of the excited state, as is known from the Landau–
Zener theory of transition [25, 26]. In the non-adiabatic limit (J � h̄ωd ), the transfer
process is accompanied with tunnelling of the proton at the saddle-point configuration, and
its jump frequency has the frequency factorω0 proportional toJ 2 [29, 30]. We emphasize
here thatω0 in the non-adiabatic limit is suitably smaller than that of the adiabatic transition.

In our system, the saddle-point configuration B is a state for whichµi + µj = 0.
Furthermore, the excitation energy of the proton motion along the direction of an O–O
bond becomes minimum atµi + µj = 0; its value is about 95 meV [18]. On the other
hand, the vibration energy of dipoles is of the order of 30 meV as mentioned in I. Thus the
relationJ > h̄ωd holds. This means that the proton transfer in KDP should be regarded as
an adiabatic transition, but not a non-adiabatic transition.

2.3. Calculations on the motion of dipole moments

Upon applying the classical approximation for the motion of dipole moments, the motion
of the system point is represented by the following set of equations:

M
d2µi

dt2
= −∂Epot

∂µi

(i = 1, . . . , N). (9)

In the ferroelectric phase, deviations of dipole moments from the saturated valueµs are
expected to be small. Therefore, the linear approximation is valid and can be used to clarify
the behaviour of dipole moments, as shown in I. In the paraelectric phase, however, more
rigorous treatments beyond the linear approximation are required because the nonlinearity
of the equations becomes important.

We must recall here that only the nearest-neighbour interaction is taken into account
for the direct interaction between dipole moments inEpot for simplicity. The long-range
part of the direct interaction between dipole moments is expected to induce fluctuations of
dipole moments, especially, in the paraelectric phase. We assume that this effect can be
expressed in terms of the random force and the friction force: a set of Langevin equations

M
d2µi

dt2
+ β

dµi

dt
= −∂Epot

∂µi

+ fi(t) (i = 1, . . . , N), (10)

is valid for the description of the motion of dipole moments, instead of equation (9), where
fi(t) andβ are the random force and the friction constant, respectively. The behaviour of
the random force is determined by the condition

〈fi(t)fj (0)〉 = 2βkT δ(t) (11)
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with the assumption that the distribution offi(t) be Gaussian with zero mean. Via this
condition forfi(t), the temperature of the system,T , is kept at a constant value [31].

Calculations were performed on a KDP lattice withN (= 4000) tetrahedra imposing a
periodic boundary condition, using the Verlet algorithm [32]. In the calculation, we assumed
that the random force acting on a dipole moment holds at a constant value over the time
interval 1t (= t0/20) and that its magnitude is given by

〈f 2
i 〉 = βkT /1t. (12)

2.4. Static properties

First, we show the temperature dependence of the thermal average of the potential energy,
〈Epot 〉, for various values ofβ in figure 2(a). It is clear from this figure that〈Epot 〉 does
not depend on values ofβ; accordingly there is little influence of the random force on the
static properties of the system, including the transition temperatureTc.

(a)

(b) (c)

Figure 2. Static properties obtained from the present calculation. Hereβ0 = (Mh/µ2
s )

1/2.
(a) The temperature dependence of the thermal average of the potential energy of the system
for various values ofβ: values forβ/β0 = 0, 0.1 and 0.2 are shown by crosses, and triangles,
respectively. (b) The temperature dependence of the thermal average of dipole moments
calculated forβ/β0 = 0.2. (c) The specific heat calculated from〈Epot 〉 for β/β0 = 0.2.



Proton transfer in KH2PO4 609

Figure 2(b) gives the temperature dependence of the thermal average of dipole moments,
〈µ〉, calculated by assumingβ/β0 = 0.2. From this figure we can see that there is a phase
transition from a ferroelectric phase to a paraelectric phase withTc ∼ 0.1h/k (= 128K).

Figure 2(c) shows the specific heat (cV ) calculated from〈Epot 〉 for β/β0 = 0.2 using
the relationcV = ∂Epot/N ∂T + k/2. We find from this result that there is a peak ofcV

at a temperature near toTc, due to an entropy change induced by the phase transition, and
that its transition entropy is about 0.7k per tetrahedron.

Table 1. Values ofIK, A, B and M used in our calculations for KDP. Here,h = 0.11 eV,
µs = 4.8×10−22 µC cm andt0 = 2.0×10−14 s. The transition temperature,Tc, obtained using
these values is also noted.

IKµs/h Aµ2
s /h Bµ2

s /h Mµ2
s /(ht2

0) Tc (K)

0.6 0.96 0.88 1.0 128

In table 1, the parameters used here are listed withTc obtained from the present
calculation. The static properties obtained here, including the values ofTc, agree well
with the previous results obtained from Monte Carlo calculations [19].

2.5. Proton jump rates

Next, we examine dynamic properties of protons. For this, it is important to recall that
the mechanism of the proton transfer in our model is regarded as the adiabatic transition,
as described in subsection 2.2. In this transition, a change in the sign of a sum of dipole
moments of two neighbouring PO4 tetrahedra,µi + µj , means the movement of the system
point from one well on the adiabatic potential surface to the other well, in other words, the
transfer of the proton connecting the two tetrahedra from one equilibrium position to the
other equilibrium position on the O–O bond. Thus we can regard the number of changes
in the sign ofµi + µj as the number of jumps of the proton between the two sites on the
O–O bond,N(t). Under this approximation, therefore,N(t) is evaluated from the time
dependence ofµi + µj . The result is shown in figure 3. As seen in this figure,N(t) is
proportional to time; accordingly the jump rate of protons,0, is determined from the slope
of N(t) in this figure.

The calculated temperature dependence of0 is shown in figure 4. In the paraelectric
phase,0 shows a weak temperature dependence; its magnitude is comparable with the
frequency of the vibration motion of dipole moments. At temperatures belowTc, on the
other hand,0 shows a drastic decrease with decreasing temperature. These features for0

are hardly altered by changes in the value ofβ.
To clarify the properties of the proton transfer, we also calculated the probabilityW(t)

that, at timet , the sign ofµi + µj remains the same as that att = 0. Results forW(t) at
T = 1.5Tc are shown in figure 5.

For the two-site model, in which a proton is assumed to jump between two sites
stochastically,W(t) is expressed by

W(t) = (1 + exp(−20t))/2. (13)

As seen in figure 5, whenβ is small,W(t) calculated here shows a deviation from this time
dependence: it has a broad peak att = 3 × 10−13 s. This means that the proton transfer is
not regarded as a simple Markov process. Whenβ increases, the peak decreases and the
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Figure 3. The time dependence of the number of jumps between two sites evaluated from the
time dependence ofµi + µj at (a) T = 1.5Tc and (b)T = 2.0Tc. Results forβ/β0 = 0 and
0.2, respectively, are shown by crosses and circles. Here,t0 = 2.0 × 10−14 s.

Figure 4. The temperature dependence of the jump rate,0. Calculated values are shown by
crosses forβ/β0 = 0, triangles forβ/β0 = 0.1 and circles forβ/β0 = 0.2, respectively.

time evolution ofW(t) becomes similar to equation (13): the proton-transfer process can
be regarded as a simple Markov process.

2.6. Incoherent neutron scattering functions

Direct experimental information on the proton transfer is obtained from incoherent neutron
scattering. In this section, therefore, we calculate the scattering function [33] of incoherent
neutron scattering defined by

Sinc(q, ω) =
∑

i

Pi

∑
f

|Mα
if |2 δ[ω + (Ei − Ef )/h̄] (14)
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Figure 5. The time dependence ofW(t) at T = 1.5Tc. Results forβ/β0 = 0 and 0.2 are shown
by the broken curve and the solid curve, respectively.

with

|Mα
if |2 =

∑
α

〈i|e−iq·rα |f 〉〈f |eiq·rα |i〉 (15)

where |i〉 and |f 〉, respectively, are the initial and final states of the system;Pi is the
occupation probability of statei; rα is a position vector of protonα; and Ei and Ef ,
respectively, are energies of the initial and final states. Using the adiabatic approximation,
|Mα

if |2 is rewritten as

|Mα
if |2 =

∑
α

〈χi |I ∗
α |χf 〉〈χf |Iα|χi〉 (16)

with

Iα =
∫

ψ∗
αeiq·uα ψα d3uα (17)

where|χi〉 (|χf 〉) is the initial (final) state of the dipole moments,ψα the ground-state wave
function of protonα, anduα a position vector of the proton measured from the centre of
the O–O bond connected by the proton.

According to I, we expressψα as the ground-state wave function of a harmonic oscillator
in three dimensions:

ψα = ψx
αψy

αψz
α (18)

with

ψx
α = (mωx/πh̄)1/4exp[−(mωx/2h̄)(xα − x0

α)2] (19)

ψy
α = (mωy/πh̄)1/4exp[−(mωy/2h̄)y2

α] (20)

and

ψz
α = (mωz/πh̄)1/4exp[−(mωz/2h̄)z2

α] (21)

whereωx , ωx , andωz, respectively, are angular frequencies of the proton in thex, y andz

directions. Here, we chose the direction of the O–O bond as thex axis, and assumed that
the wave function has its maximum amplitude at(x0

α, 0, 0). Using this wave function, we
can expressIα as follows:

Iα = exp(−(h̄/4m)[(q · xα)2/ωx + (q · yα)2/ωy + (q · zα)2/ωz]) exp(i(q · xα)x0
α) (22)
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wherexα, yα andzα are unit vectors defined by

uα = xαxα + yαyα + zαzα (23)

respectively.
In our model, bothωx andx0

α depend strongly on a sum of dipole moments of two PO4

tetrahedra connected by protonα, µi + µj , whereas dependencies ofωy andωz on µi + µj

are weak. For simplicity, we assume thatωy and ωz are independent ofµi + µj . In this
approximation,|Mα

if |2 may be written as

|Mα
if |2 = exp(−ηα)Gα

if (24)

with

ηα = (h̄/2m)[(q · yα)2/ωy + (q · zα)2/ωz] (25)

and

Gα
if = 〈χi |esα |χf 〉〈χf |es∗

α |χf 〉 (26)

wheresα is defined by

sα = −h̄(q · xα)2/4mωx + i(q · xα)xo
α (27)

ands∗
α is the complex conjugate ofsα.

By introducing Heisenberg operators defined by

sα(t) = exp(iHadt/h̄)sα exp(−iHadt/h̄) (28)

the incoherent scattering function may be rewritten as follows:

Sinc(q, ω) = exp(−ηα)G(q, ω) (29)

with

G(q, ω) =
∫

〈esα(t)es∗
α(0)〉e−iωt dt (30)

where〈· · ·〉 means the thermal average, andHad is the Hamiltonian for the motion of dipole
moments in the adiabatic approximation, defined by

Had = −
∑ h̄2

2M

∂2

∂µ2
i

+ Epot . (31)

By using this expression, in principle we obtain the scattering function for protons under
the adiabatic approximation. At present, however, it is difficult to perform the calculation
directly.

We examine here the proton-transfer process in the temperature region where the motion
of the system point is described classically. The scattering function in this temperature
region may be estimated by regarding the operatorssα(t) and s∗

α(0) as c-numbers. Then
equation (30) is rewritten as

G(q, ω) =
∫

〈exp(sα(t) + s∗
α(0))〉e−iωt dt (32)

which is evaluated from the time evolution of dipole moments calculated in section 3.
To perform this calculation, knowledge about dependencies ofωx and x0

α on µi + µj

is required. The frequencyωx is obtained from the dependence onµi + µj of the first
excitation energy of protons along the direction of O–O bonds. For the potential parameters
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we adopted, the dependence onµi +µj of ωx for a proton may be approximately expressed
as

h̄ωx = 0.095 eV for 0< |µi + µj |/2µs < 0.26 (33)

and

h̄ωx = 0.078+ 0.085|µi + µj |/2µs eV for 0.26 6 |µi + µj |/2µs (34)

respectively (see figure 2 in [18]).
For x0

α, we assume the following relation:

x0
α/1 = (ew − 1)/(ew + 1) (35)

where

w = µi + µj

2µs

zc. (36)

In figure 6 we show the dependence onω of the incoherent scattering functions obtained
by assumingzc = 2.5 and1 = 0.21 Å. We note here that|x0

α| for |µi + µj |/2µs = 1
is 0.18 Å for these values ofzc and 1, which is in good agreement with the position
of a proton measured from the centre of an O–O bond, obtained from neutron diffraction
measurements [22].

In the ferroelectric phase, there is a peak at about 30 meV (see figure 6(a)), whereas
the peak disappears at high temperatures aboveTc. The physical origin of the peak is the
vibration motion of protons induced by electric dipole waves as discussed in I. Note that
the value of the effective mass of dipole moments has been chosen so that a scattering peak
caused by this mechanism appears at 30 meV.

In the paraelectric phase, there is no peak at near to 30 meV. Forβ/β0 = 0, a peak
appears at about 10 meV instead, as shown in figure 6(b). The height of this peak is at
its maximum at|q| ∼ 8 Å−1 and increases with increasing temperature. The appearance
of this peak means that there is the vibration motion of protons with a period of about
3 × 10−13 s induced by thermal fluctuations in the paraelectric phase. This is consistent
with the calculated result forW(t) at β/β0 = 0 described in section 3.

Table 2. Values of the fitting parameters,g, g1, �, �1 andω1, obtained by fitting equation (37)
to the scattering function forq = 8 Å calculated forT = 1.5Tc. Here, an arbitrary unit is used
for g andg1.

β/β0 g g1 h̄� (meV) h̄�1 (meV) h̄ω1 (meV)

0.0 9.3 5.2 2.3 4.5 10.8
0.1 13.7 2.9 4.2 4.7 9.9
0.2 14.6 2.5 4.2 5.6 8.4

To perform more quantitative analysis of the scattering function in the paraelectric
phase, we assume that the scattering function can be expressed as a sum of two Lorentzian
distributions:

Gα(ω) = g
�

(ω2 + �2)
+ g1

�1

((ω − ω1)2 + �2
1)

. (37)

For various values ofβ, calculated scattering functions are fairly well reproduced by the
best-fit curve obtained from this expression by adjusting five parameters,g, �, g1, �1

and ω1. In table 2, the five parameters obtained are listed forT = 1.5Tc. Note here
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(a)

(b)

Figure 6. The dependence onω of the incoherent scattering functions for (a)T = 0.5Tc, and
(b) T = 1.5Tc. Results forβ/β0 = 0 and 0.2 are shown by crosses and circles, respectively.
For scattering vectors,q, it is assumed that|q| = 8 Å−1 and its direction is parallel to thea
axis of a KDP crystal.

that g1/g = 0.15 at β/β0 = 0.2. This means that, in this case, the scattering function is
substantially regarded as a simple Lorentzian distribution with its maximum atω = 0—that
is, a quasi-elastic scattering peak with a broad width.

In figure 7 we shown the temperature dependence of� obtained by fitting equation (37)
to the scattering function calculated forβ/β0 = 0.2.

We note here that the features of the scattering function obtained do not depend on
details of the dependence onµi + µj of ωx andx0

α.

3. Discussions

Recently, in the paraelectric phase of KDP, a strong quasi-elastic peak was found in the
energy spectrum of incoherent neutron scattering measured by Ikedaet al [15]. This peak
extended over a wide range of the energy transfer reaching to 20 meV and its line shape was
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expressed in terms of the Lorentzian distribution. This result was interpreted as suggesting
that there is a stochastic proton-transfer process in which a proton jumps between the two
stable positions separated by about 0.32Å at a jump rate of the order of 1012 s−1.

Figure 7. The temperature dependence of� determined from the calculated result for scattering
functions forβ/β0 = 0.2 in the paraelectric phase. For scattering vectors,q, it is assumed that
|q| = 8 Å−1 and its direction is parallel to thea axis of a KDP crystal.

Yamada and Ikeda [34] regarded KDP as a proton–phonon system and tried to analyse
the temperature dependence of the widths of the observed quasi-elastic peaks under the
assumption that the hopping rate is expressed by

0 = (π/4h̄2EakT )1/2|J |2e−Ea/kT (38)

as given by Flynn and Stoneham [30]. The result was that the parameter values must be
chosen asEa = 37 meV andJ = 66 meV to reproduce the temperature dependence of the
peak width of the quasi-elastic peak.

Since equation (38) has been derived in the non-adiabatic limit, the criterion for the non-
adiabatic transition to occur, that is,J � h̄ωd , must be satisfied as mentioned in section 2.
Accordingly, this value ofJ means that phonons with very large energy (�66 meV)
coupling with the motion of protons must exist in KDP. At present, however, evidence that
such phonons exist has not been obtained. In addition, the value ofJ is too large because
the tunnelling-spilt energy (2J ) becomes of the same order as the excitation energies of
protons observed via incoherent neutron scattering. These facts suggest that a process due
to the tunnelling effect of a proton at the saddle-point configuration is not regarded as the
mechanism of the proton transfer in KDP, and, accordingly, that the proton transfer in KDP
is due to the adiabatic transition, but not the non-adiabatic transition.

In the present calculation assuming the adiabatic transition, we found that a proton in
the paraelectric phase moves between two sites at a rate comparable to a frequency of the
vibration motion of the system point, as expected. We also found that the proton motion
for β/β0 = 0 is not regarded as a simple Markov process since the time dependence of the
proton position has a component changing periodically. The existence of this component
means that an inelastic scattering peak appears in the energy spectrum. In fact, it was shown
by our calculation of the scattering function that an inelastic scattering peak appears when
the random force is small.

When the random force is large, on the other hand, a quasi-elastic peak becomes
dominant instead of this inelastic scattering peak. This means that a quasi-elastic peak
is observed in the energy spectrum of neutron scattering for a system with a large value of
β. KDP seems to be regarded as such a system. Thus we conclude that our model gives a
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qualitative explanation for the observation of the quasi-elastic scattering peak by Ikedaet
al [15].

Quantitatively, however, observed widths of the quasi-elastic peak are greater than the
calculated ones by a factor of about 4 since, for example, an observed value of the width is
7 meV atT = 130 K [15]. This difference disappears if we choose the effective mass,M,
as a twelfth the present value. In this case, however, a peak due to the vibration motion of
protons induced by dipole waves must be observed at near to 120 meV in the ferroelectric
phase. There is no observation of such a peak. Accordingly, the validity of such a choice
of M is questionable. At present, therefore, the origin of this disagreement is not clear.

In judging the reliability of our model for the proton transfer, it is important to recall that,
in our model, the jump rate is completely determined by the motion of dipole moments.
The present result, that the proton transfer occurs at a rate of 1012 s−1, implies that the
relaxation process of the dipole moment has a relaxation rate of the order of 1012 s−1. Such
relaxation motion of the dipole moment is expected to be obtained from measurements of
the dielectric dispersion. In fact, Horiokaet al [35] observed the dielectric constant in KDP
and found that, in the paraelectric phase, a dipole moment has a relaxation time of about
10−13 s. Although it is not clear whether or not the relaxation observed by them can be
ascribed to the motion of the dipole moment induced by the deformation of PO4 tetrahedra,
this observation seems to indicate the applicability of our model for the proton transfer
in KDP. More detailed calculations on the relaxation process of dipole moments will be
reported in forthcoming publications, based on the present approach.

Concerning the relaxation of dipole moments, Matsumoto and Ogura [36] have revealed
the conclusion that there is a relaxation process with a relaxation rate of the order of 1012 s−1,
on the basis of the Slater–Takagi model modified by Silsbeeet al [37]. In their calculation,
however, the transition probability per unit time from proton configurationi to j , Wij , is
assumed as

Wi,j = (kT /2πh̄) exp(−Eij/kT )

where Eij is an energy difference between configurationsi and j . Since the
proton configurations that are taken into account in the Slater–Takagi model are stable
configurations, but not saddle-point configurations, their treatment seems to be inadequate
for estimating the magnitude of the relaxation time of dipole moments. We emphasize here
that our model gives a qualitative explanation for both experiments—namely, the inelastic
neutron scattering in the low-energy region and the measurement of the dielectric dispersion,
as described above.

We note that, for K3H(SO4)2 and Rb3H(SO4)2, a peak at about 5 meV has been found
in the energy spectra measured by using incoherent neutron scattering [38]. As shown in our
calculation, observation of such low-energy excitations is possible in a hydrogen-bonded
material in which the effect of the random force is small. The origin of the low-energy
excitations observed might, therefore, be ascribed to the proton transfer in a system with
small β. To confirm this inference, however, it is necessary to perform more detailed
calculations taking account of the crystal structure.

Finally, we make some remarks as to the validity of the present calculations. Our
calculations were performed in the framework of the classical approximation for the motion
of dipole moments. The conclusion obtained here is, therefore, justified only when this
approximation is valid. It is clear that the approximation is inadequate at low temperatures.
In fact, the height of the peak at about 30 meV in the ferroelectric phase rapidly increased
with increasing temperature in the present calculations. This temperature dependence clearly
differs from the one obtained in I: in the quantum mechanical treatment, the height of the
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peak increases little with increasing temperature, in agreement with observation.
A criterion for the validity of the classical approximation is that the thermal energy

is larger than the vibration energy of relevant modes. For the peak at 30 meV described
above, this criterion is not satisfied since, in the ferroelectric phase, the thermal energykT

is sufficiently smaller than 30 meV. Accordingly, the classical approximation is inadequate
for this mode.

For the peak at 10 meV in the paraelectric phase, however, it holds thatkT > 10 meV.
Accordingly, we believe that the calculation method adopted here is not a poor
approximation for the proton transfer in the ferroelectric phase, and accordingly the present
calculation is sufficiently good to allow us to conclude that it indicates the existence of a
proton-transfer process with a very fast jump rate.

4. Conclusion

From the examination of our model proposed to explain the ferroelectric phase transition,
we conclude that, in the paraelectric phase, the mechanism of proton transfer in KDP is the
adiabatic transition and its jump frequency is of the order of 1012 s−1.
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